Property of Kelley for confluent retractable continua

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The property of Kelley in nonmetric continua

The main purpose of this paper is to study the property of Kelley in nonmetric continua using inverse systems and limits.

متن کامل

Semi-terminal Continua in Kelley Spaces

A continuum K in a space X is said to be semi-terminal if at least one out of every two disjoint continua in X intersecting K is contained in K. Based on this concept, new structural results on Kelley continua are obtained. In particular, two decomposition theorems for Kelley continua are presented. One of these theorems is an improved version of the aposyndetic decomposition theorem for Kelley...

متن کامل

Smoothness and the property of Kelley

Interrelations between smoothness of a continuum at a point, pointwise smoothness, the property of Kelley at a point and local connectedness are studied in the paper.

متن کامل

On mapping properties and the property of Kelley

Mapping conditions are studied under which a continuum having the property of Kelley has this property hereditarily. The obtained results, related mainly to confluent mappings, extend some known assertions of the subject.

متن کامل

Supplement for Kelley & Lai ( 2011 )

Using MBESS to implement the Methods Discussed The methods discussed and developed in Kelley and Lai (2011a) are implemented with the freely available MBESS (Kelley, 2007a, 2007b; Kelley & Lai, 2011b) R (R Development Core Team, 2011) package.1 First, it is helpful to know that a confidence interval for ε can be formed with the function ci.rmsea(). To form a 95% confidence interval for εwhen ε̂ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2001

ISSN: 0166-8641

DOI: 10.1016/s0166-8641(99)00205-9